首页> 外文OA文献 >Sparse Time-Frequency Representation for Signals with Fast Varying Instantaneous Frequency
【2h】

Sparse Time-Frequency Representation for Signals with Fast Varying Instantaneous Frequency

机译:具有快速变化的信号的稀疏时频表示   瞬时频率

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Time-frequency distributions have been used to provide high resolutionrepresentation in a large number of signal processing applications. However,high resolution and accurate instantaneous frequency (IF) estimation usuallydepend on the employed distribution and complexity of signal phase function. Toensure an efficient IF tracking for various types of signals, the class ofcomplex time distributions has been developed. These distributions facilitateanalysis in the cases when standard distributions cannot provide satisfactoryresults (e.g., for highly nonstationary signal phase). In that sense, anambiguity based form of the forth order complex-time distribution isconsidered, in a new compressive sensing (CS) context. CS is an intensivelygrowing approach in signal processing that allows efficient analysis andreconstruction of randomly undersampled signals. In this paper, the randomlychosen ambiguity domain coefficients serve as CS measurements. By exploitingsparsity in the time-frequency plane, it is possible to obtain highlyconcentrated IF using just small number of random coefficients from ambiguitydomain. Moreover, in noisy signal case, this CS approach can be efficientlycombined with the L-statistics producing robust time-frequency representations.Noisy coefficients are firstly removed using the L-statistics and thenreconstructed by using CS algorithm. The theoretical considerations areillustrated using experimental results.
机译:时频分布已用于在大量信号处理应用程序中提供高分辨率表示。但是,高分辨率和准确的瞬时频率(IF)估计通常取决于信号相位函数的采用分布和复杂性。为了确保对各种类型的信号进行有效的IF跟踪,已经开发了复杂的时间分布类别。当标准分布无法提供令人满意的结果时(例如,对于高度不稳定的信号相位),这些分布有助于进行分析。从这个意义上讲,在新的压缩感测(CS)上下文中考虑了基于歧义的四阶复杂时间分布形式。 CS是信号处理中不断发展的一种方法,可以对随机欠采样的信号进行有效的分析和重建。在本文中,随机选择的模糊域系数用作CS度量。通过利用时频平面中的稀疏性,仅使用来自模糊域的少量随机系数就可以获得高度集中的IF。此外,在噪声信号的情况下,这种CS方法可以有效地与L统计量相结合,产生鲁棒的时频表示。首先使用L统计量去除噪声系数,然后使用CS算法对其进行重构。使用实验结果说明了理论上的考虑。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号